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Abstract

This paper analyses the effects of disease and warfare on the accumulation
of human and physical capital, with special reference to the existence – or
otherwise – of poverty traps and steady-state growth paths. We employ an
overlapping generation framework in which young adults, confronted with
such hazards and motivated by old-age provision and altruism, make deci-
sions about investments in schooling and reproducible capital. We establish
that there are stationary constellations of war losses and premature adult
mortality such that both backwardness, in the sense there is no investment
in human capital through schooling, and steady growth with a fully educated
population are possible equilibria. Stronger altruism makes the existence of
such a poverty trap less likely. Rather paradoxically, altruism can also rule
out a steady-state growth path on which children are fully educated when
altruism is expressed only in the form of investment in education, because
investment in physical capital then affects only old-age provision, and in bal-
anced growth, all components contributing to welfare must keep the same
pace.
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1 Introduction

Dürer’s woodcut, ‘The Four Horsemen of the Apocalypse’, is a compelling and

terrifying vision of the great scourges of humanity from time immemorial. This

paper deals with three of them – pestilence, war and death, with their accompa-

nying destruction of human and physical capital. Its particular concern is how

these calamities affect the accumulation of capital, with special reference to the

existence – or otherwise – of poverty traps and steady-state growth paths. The

treatment is necessarily stylised, simple and, in contrast to Dürer’s masterpiece,

desiccated.

In such a setting, the distinction between human and physical capital is vital.

Not only are they complementary in production, but they are also, in general,

subject to different, albeit not fully independent, hazard rates. The attendant

risks are, moreover, not equally insurable. These considerations weigh heavily in

the decision of how much to invest for the future and in what form, with all the

ensuing consequences for poverty and material prosperity over the long run.

A few selected examples of such calamities will convey some flavour of the historical

dimensions of what is involved. The Black Death carried off about one-third of

the entire European population between 1347 and 1352. The so-called ‘Spanish

influenza’ pandemic of 1918-1920 is estimated to have caused at least 50 million

deaths globally, mortality among young adults being exceptionally high. In recent

times, the AIDS pandemic, far slower in its course like the disease itself, still

threatens to rival that figure, despite the improved availability of anti-retroviral

therapies. As in Dürer’s woodcut, pestilence and war also ride together. Half

a million soldiers died in an outbreak of smallpox in the Franco-Prussian War

of 1870-71 (Morgan, 2002). For every British soldier who fell in combat in the

Crimean War (1854-56), another ten died of dysentery, and in the Boer War (1899-

1902), the ratio was still one to five.

War losses in the 20th Century make for especially grim reading. Between 15

and 20 million people died in the First World War, the majority of them young

men. Almost two million French soldiers fell, including nearly 30 per cent of the

conscript classes of 1912-15. Joining this companionship of death were over 2

million Germans, including almost two of every five boys born between 1892 and

1895 (Keegan, 1999: 6-7), almost a million members of the British Empire’s armed
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forces, and many millions more in those of Imperial Austria, Russia and Turkey. Its

continuation, the Second World War, was conducted, in every respect, on a much

vaster scale. Most estimates suggest that it resulted in about 50 million deaths,

directly and indirectly. Among them were 15 or more million Soviet soldiers and

civilians, 6 million Poles (20 per cent of that country’s pre-war population) and

at least 4 million Germans (Keegan, 1990: 590-1). With these staggering human

losses went the razing of German and Japanese cities and massive destruction

in the western part of the Soviet Union and the states of Eastern Europe. The

catalogue of conflicts in the second half of the 20th Century is also unbearably

long, with particularly appalling casualties in South-east Asia and Rwanda.

Great epidemics and wars, of course, capture the headlines and grip the imagina-

tion, but the majority of those adults who die prematurely fall victim to low-level,

‘everyday’ causes, especially in poor countries: notable killers are endemic commu-

nicable diseases, accidents, violence and childbirth. These are competing hazards

– one dies only once –, but their combined effect is not wholly negligible even in

contemporary O.E.C.D. countries. In many poorer ones, it is quite dismaying. Ac-

cording to the WHO (2007), those who had reached the age of 20 in the O.E.C.D.

group could expect to live, on average, another 60 years or so, their counterparts in

China and India another 50-55 years, and those in sub-Saharan Africa but 30-40.

The odds that a 20-year old in the O.E.C.D. group would not live to see his or

her 40th birthday were 1 or 2 in a 100, rising to 2.5-5 in a 100 for the 50th birth-

day. These odds were just a little worse for young Chinese, decidedly worse for

young Indians, and for young Africans, much less favourable than those of Russian

roulette – in some countries where the AIDS epidemic was raging, indeed, scarcely

better than the toss of a fair coin.

Issues and Model

The human and material losses inflicted by these causes, whether they take the

form of great epidemics and wars, or endemic communicable diseases and low-level

conflict, have long-run as well as immediate economic consequences. We therefore

address the following questions.

• How large can these hazards be without calling into existence a poverty trap?

• How large can they be without ruling out the possibility of steady-state

growth?
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• In what settings are both secular, low-level stagnation and steady-state

growth possible equilibria?

• Is balanced growth possible when parents are moved by altruism?

• If so, is stronger altruism conducive to faster steady-state growth?

The overlapping generations (OLG) model offers the most natural framework

within which to analyse the long-run consequences of economic behaviour in such

environments. In the variant adopted here, there are children, young (working)

adults and the old. Young adults decide how much schooling the children will

receive and how much to put aside to yield a stock of physical capital in the next

period. In doing so, they are bound by certain social norms, which govern the

distribution of aggregate current consumption among the three generations con-

stituting the family. Untimely destruction can undo these plans, however carefully

laid. The children may die prematurely at some point in young adulthood; and

war can wreak havoc on the newly formed capital stock. These losses, if they

occur, will reduce the resources available to satisfy claims on consumption in old

age in the period that follows. Parents may also be motivated by altruism towards

their children, so that premature deaths among them will be felt as a distinct loss

quite independently of the ensuing reduction in old-age consumption under the

prevailing social norms – and arguably all the more keenly if the children have

been well educated. The institutional form within which all this takes place is

assumed to be a very large extended family, in which the surviving young adults

raise all surviving children. Given such pooling and the level of war losses, the law

of large numbers makes the level of consumption in old age virtually certain – for

those who survive to enjoy it –, but the idiosyncratic risk of dying earlier remains.

War losses are wholly uninsurable and operate much like cohort-specific mortality.

Literature

There is a substantial literature on the relationship between the health of popula-

tions and aggregate economic activity. Notable is the general empirical observation

that good health has a positive and statistically significant effect on aggregate out-

put (Barro and Sala-I-Martin, 1995; Bloom and Canning, 2000; Bloom, Canning

and Sevilla, 2001). What is especially relevant for present purposes, however, is

a body of work on the macroeconomic effects of AIDS, in which there are vary-

ing points of emphasis. Corrigan, Glomm and Méndez (2004, 2005), for example,
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adopt a two-generation OLG framework in which the epidemic can affect schooling

and the accumulation of physical capital, but expectations about future losses play

no role. In two contrasting studies of South Africa, Young (2005) uses a Solovian

model to estimate the epidemic’s impact on living standards through its effects

on schooling and fertility, with a constant savings rate; whereas Bell, Devarajan

and Gersbach (2006) apply a two-generation OLG model with pooling through ex-

tended families and a central role for expectations, but without a role for physical

capital.

Closely related theoretical contributions include Chakraborty (2004), in whose

OLG framework endogenous mortality is at centre-stage. Better health promotes

growth by improving longevity, and investment in health emerges as a prerequisite

for sustained growth. In Boucekkine and Laffargue’s (2010) two-period framework

with heterogeneous levels of human capital, a rise in mortality among adults in

the first period reduces the proportion of young adults with low human capital

in the second period because the mortality rate among children at the end of

the first rises more sharply in poor families. The number of orphans in the first

period increases, however, so that the proportion of young adults with low human

capital in the second period will increase if orphans go poorly educated. Bell and

Gersbach (2013) analyse growth paths and poverty traps when epidemics take the

form of two-period shocks to mortality, paying particular attention to their effects

on inequality in nuclear family systems, albeit without a place for physical capital.

A salient feature of these studies is the central importance, if only implicitly, of

premature adult mortality. Physical capital, when it does appear, is not subject

to the hazards that concern us here. In particular, exponential depreciation at a

constant rate in Solovian models does not lend itself to the task of representing the

shocks of war losses. To our knowledge, there are no contributions that attempt

to analyse the combination of both forms of such premature destruction, which is

precisely the object of this paper.

It should be remarked that the paper’s theme is broadly related to the existence

and relevance of ‘balanced growth paths’. The classic problem examined by Uzawa

(1961) is whether balanced growth paths exist in neoclassical growth models with

capital accumulation, population growth and labour- or capital-augmenting tech-

nological progress. As recently shown by Grossman at al. (2016), balanced growth

requires either an absence of capital-augmenting technological change or a unitary
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elasticity of substitution between physical and human capital, in which case the

forms of factor-augmenting technical change are all equivalent. In this connection,

we explore a complementary balanced growth problem: does balanced growth exist

in an OLG framework with endogenous physical capital, human capital accumula-

tion, and altruism? We establish conditions on the utility functions with respect

to altruism and consumption that allow balanced growth without imposing strong

restrictions on the production technology.

The plan of the paper is as follows. Section 2 lays out the model and specifies

the general problem to be solved. Section 3 analyses, in comparative fashion, how

changes in mortality rates and war losses influence the economy’s path. Section

4 establishes conditions for the existence of a poverty trap, but imposing the

condition that steady-state growth is not ruled out as an alternative possibility.

With a compatible pair of a stable low-level equilibrium and a steady-state growth

path as alternative possible outcomes, conditions for the existence of the latter

paths and their character are the subject of Section 5. Section 6 briefly draws

together some conclusions.

2 The Model

2.1 The macroeconomic structure

There are three overlapping generations: children, who split their time between

schooling and work; young adults, who work full time; and the old, who are active

neither economically nor in raising children. The timing of events within each

period for a generation t, born in period t − 1 and becoming young adults in

period t, is displayed in Figure.??.

All individuals belong to numerous, identical and very large extended families. In

each such family, the number of young adults at the beginning of period t is N2
t .

They marry and have children at once. Mortality among children occurs only in

infancy, and any child who dies is replaced immediately. After such replacement

fertility, each couple within the extended family has 2nt children, all of whom

survive into adulthood in the next period. Death then claims both some young

adults and some of those who have just entered old age. The surviving young adults
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rear all children collectively and decide how to allocate the children’s time between

schooling and work, and the resulting aggregate output between consumption and

savings, whereby certain social rules govern the claims of children and the old in

relation to the consumption of young adults. The numbers of young adults and

their offspring who reach maturity are, therefore,

N2
t = nt−1N

2
t−1 and N1

t = ntN
2
t ,

respectively, where nt is the net reproduction rate (NNR). The numbers of young

and old adults who make claims on output in period t are as follows:

(1− q2t )N2
t young adults survive to raise all children, and

(1− q3t )N3
t old adults survive to full old age, where N3

t = (1− q2t−1)N2
t−1

and qat denotes the premature mortality rate among age group (a = 2, 3). All

adults who do reach full old age in period t die at the end of that period.

The first social rule governing consumption is that each child consumes βc2t (β < 1)

when each surviving young adult consumes c2t . The second rule decrees that all

surviving old adults obtain together the share ρ of the family’s current ‘full income’,

Ȳt, which is the level of output that would result if all children were to work full

time. Since the extended family is very large, only the individual risk of premature

death remains, so that each surviving old adult will consume

c3t =
ρȲt

(1− q3t )N3
t

(1)

with certainty.

Output is produced by means of labour (measured in efficiency units) and capital,

which is made of the same stuff as output, under constant returns to scale. All

individuals are endowed with one unit of time. Each young adult possesses λt

efficiency units of labour, each child γ units. Each fully educated child (et = 1)

requires w (< 1) young adults as teachers, so that the direct cost of providing

each child with schooling in the amount et ∈ [0, 1] is wλtet, measured in units

of human capital. The total endowment of the surviving young adults’ human

capital is defined to be Λt ≡ (1− q2t )N2
t λt; and the amount of labour supplied to
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the production of the aggregate good is

Lt ≡ [(1− q2t − wntet)λt + ntγ(1− et)]N2
t . (2)

The aggregate savings of the previous period, St−1, like the cohort of children

entering adulthood, are also subject to losses early in the current one, and what

does remain has a lifetime of one period. The capital stock available for current

production is therefore Kt = σtSt−1, where σt ∈ (0, 1] is the survival rate in period

t. The current levels of aggregate output and full income are, respectively,

Yt = F (Lt, σtSt−1). (3)

and, putting et = 0,

Ȳt ≡ Y (et = 0) = F (Λt + γN1
t , σtSt−1),

where the function F is assumed to have all the other usual nice properties and

Λt + γN1
t ≡ L̄t

is the household’s endowment of labour at time t.

Full income is available to finance the consumption of all three generations in

keeping with the social rules, savings to provide the capital stock in the next

period, and investment in the children’s education.

Ptc
2
t + St + ρȲt = Yt, (4)

where Pt ≡ [(1− q2t ) +βnt]N
2
t is effectively the price of one unit of a young adult’s

consumption in terms of output, the numeraire.

The formation of human capital involves the contributions of parents’ human capi-

tal as well as formal education. The human capital attained by a child on reaching

adulthood is assumed to be given by

λt+1 = zth(et)λt + 1. (5)

The multiplier zt(> 0) represents the strength with which capacity is transmitted
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across generations; and it may depend on the number of children each surviving

young adult must raise. The function h(·) may be thought of as representing the

educational technology, albeit with the fixed pupil-teacher ratio of 1/w. Let h(·) be

an increasing, differentiable function on [0, 1], with h(0) = 0 and lime→0+ h
′(e) <

∞. The property h(0) = 0 implies that unschooled children attain, as adults, only

some basic level of human capital, which has been normalised to unity.

2.2 Preferences and choices

Young adults, who make all allocative decisions, have preferences over lotteries

involving current consumption, consumption in old age and, if they are altruistic,

the human capital attained by the children in their care. When deciding on an

allocation (c2t , et, St), young adults must forecast mortality and destruction rates

in the coming period. Armed with such (sharp) forecasts1 and noting (5), they ob-

tain c3t+1 from (1), which the law of large numbers renders virtually non-stochastic.

The stochastic element in the lotteries in question therefore arises only from the

probabilities of not surviving into full old age and, where altruism towards the chil-

dren is concerned, that they will suffer the misfortune to die prematurely in young

adulthood. In this connection, let there be full altruism towards adopted children.

The adults’ preferences are assumed to be additively separable in (c2t , c
3
t+1, λt+1)

and von Neumann-Morgenstern in form:

Vt = u(c2t ) + δ(1− q3t+1)u(c3t+1) +
b(1− q2t+1)

(1− q2t )
ntv(λt+1),

2 (6)

where δ is the pure impatience factor and b is a taste parameter for altruism. The

utility functions u and v are assumed to be strictly concave. In what follows, it

will simplify the exposition by defining

χt ≡ δ(1− q3t+1) and νt ≡
b(1− q2t+1)nt

(1− q2t )
.

1For a vigorous argument that rational actors must have sharp priors, see Elga (2010).
2If only natural children count, the ‘adjustment’ for adopted children 1/(1− q2t ) drops out.
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The young adults’ decision problem is as follows:

max
(c2t ,et,St)

Vt s.t. (1)− (5), c2t ≥ 0, et ∈ [0, 1], St ≥ 0. (7)

When solving it, they note the current state variables, (N1
t , N

2
t , N

3
t , q

2
t , q

3
t , λt, Kt),

and the variables to be forecast, (nt+1, q
2
t+1, q

3
t+1, σt+1). Let (c20t , e

0
t , S

0
t ) solve (7),

where

e0t = e0t (λt, Kt,Nt,qt ;nt+1,qt+1, σt+1; β, ρ, w, γ, δ, b),

S0
t = S0

t (λt, Kt,Nt,qt ;nt+1,qt+1, σt+1; β, ρ, w, γ, δ, b),

and qt = (q2t , q
3
t ).

2.3 Evolution of the economy

The task before us is to analyse the evolution of λt and Kt with particular reference

to the current environment and its future course. The said evolution is governed

by the following pair of difference equations:

λt+1 = zth(e0t )λt + 1 = H(λt, Kt,Nt,qt ;nt+1,qt+1, σt+1; β, ρ, w, γ, δ, b)

K0
t+1 = σt+1S

0
t = G(λt, Kt,Nt,qt ;nt+1,qt+1, σt+1; β, ρ, w, γ, δ, b).

The first step is to normalise the system by exploiting the assumption that F is

homogeneous of degree one. Let lt ≡ Lt/N
2
t and st ≡ St/N

2
t , so that (1) and (4)

can be written as

c3t+1 =
ρnt

(1− q3t+1)(1− q2t )
· F
[
(1− q2t+1)λt+1(et) + nt+1γ,

σt+1st
nt

]
(8)

and

[(1− q2t ) + βnt]c
2
t + st + ρF

[
(1− q2t )λt + ntγ,

σtst−1
nt−1

]
= F

(
lt,
σtst−1
nt−1

)
, (9)

respectively. The stock of physical capital available to each surviving young adult
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in period t is

kt ≡
σtst−1

(1− q2t−1)nt−1
. (10)

Normalised output is

yt ≡ F

(
(1− q2t − wntet)λt + ntγ(1− et),

σtst−1
nt−1

)
.

It will be likewise useful to have an analogous definition of normalised full income:

ȳt ≡ F

(
l̄t,
σtst−1
nt−1

)
,

where l̄t ≡ L̄t/N
2
t denotes the normalised endowment of labour at time t. In what

follows, it should be noted that F is homogeneous of degree one, in particular, in

the quantities lt = (1− q2t − wntet)λt + ntγ(1− et) and (1− q2t−1)kt.

Together with the constraints c2t ≥ 0, et ∈ [0, 1] and st ≥ 0, the budget identity

(9) defines the set of all feasible allocations (c2t , et, st). Upon substitution for c3t+1

from (8) into (6), it is seen that Vt is likewise defined in the same space.

3 The Impact of Mortality and Destruction

We start the analysis by establishing how changes in mortality and destruction

rates affect the feasible set and the preference map. Beginning with the former,

inspection of (9) reveals that a higher destruction rate of savings (a lower value

of σt) will cause the feasible set to contract if ρ is not too close to one and, for

the subset all allocations in which there is not a heavy resort to child labour (et

sufficiently close to one), human and physical capital are fairly good substitutes

in production (equivalently, the cross-derivative F12 is sufficiently small, where Fi

denotes the derivative w.r.t. argument i).

An increase in the mortality rate q2t has slightly more complicated effects. For

small changes therein, the third term on the l.h.s. of (9) decreases by an amount

proportional to ρF1

(
l̄t, σtst−1/nt−1

)
λt and the r.h.s. by an amount F1(et)λt, which

is absolutely larger for all et ∈ [0, 1]. The normalised relative price [(1− q2t ) + βnt]
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changes one for one with q2t , but with opposite sign. Thus, a higher mortality

rate among young adults not only results in a contraction of the feasible set,

but also makes current consumption cheaper relative to investment in human and

physical capital, whereby it favours the latter: the associated marginal rate of

transformation is

MRTse =
−1

nt(wλt + γ)F1[(1− q2t − wntet)λt + ntγ(1− et), σtst−1/nt−1]
,

from which it is seen that an increase in q2t cheapens st relative to et.

Turning to preferences, the forecast values of all mortality and destruction rates

affect Vt through c3t+1; the current and forecast levels of q2 enter into the effective

weight on the altruism term. By inspection of (8), a higher forecast destruction

rate lowers the weight on st, and hence on the provision for c3t+1, but it also makes

et more attractive than st in such provision. An increase in the forecast level of

premature mortality among young adults has the opposite effect on both; for if

there are fewer survivors, each will produce, cet. par., more full income, and so

increase c3t+1 under the social norm. Indeed, equiproportional changes of the same

sign in the survival rates 1 − q2t+1 and σt+1 have virtually no effect on c3t+1 for

sufficiently large values of λt, as would hold on a steady-state growth path.

Current mortality at the beginning of old age, q3t , has no effect on the current

feasible set, but its forecast level plays a central role in influencing the weights in

Vt. Since u is strictly concave, c3t+1 = (1 − q3t+1)u(ρntF (̄· t+1)/(1 − q2t )(1 − q3t+1))

is decreasing in q3t+1 for any given (et, st): if the chances of surviving into old

age fall, providing for old age becomes less attractive, while leaving the relative

attractiveness of et and st as vehicles for such provision unchanged. There remains

the altruism term in (6), whose effective weight depends on the ratio of forecast

to current survival rates among young adults. In a stationary environment, this

will be constant.

4 Stationary Equilibria and Poverty Traps

Stationary equilibria can hold only in a stationary environment. Fertility and

mortality rates are necessarily constant; but the population need not be stationary
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– equivalently, the net reproduction rate (NNR) nt need not be unity. Given these

demographic conditions, output per head can increase only if there is some form

of technical progress. If time t does not appear as an explicit argument of F , the

only possible form of technical progress in the present framework is the labour-

augmenting kind, which is expressed by an increase in the average level of human

capital possessed by those supplying labour to production. The first question to

be answered, therefore, is whether allocations in which no generation receives any

schooling can be equilibria, with the result that λt = 1 ∀t. An outcome in which

young adults are wholly uneducated will be termed a state of backwardness. The

second, related question is whether such a state is locally stable. If it is, then

backwardness – should it once occur – will persist: that is, there is a poverty trap.

The third question is whether, in any stationary setting, there exist other equi-

libria, in which children receive at least some schooling. Of particular interest is

the happy outcome in which they are fully educated (et = 1), and once achieved,

this outcome continues from then onwards. Now, unbounded growth of output

per worker is possible only if λt can grow without bound. Recalling (5), it is seen

that a necessary condition for this outcome when full education for all is achieved

in some period t′ and maintained thereafter is zth(1) > 1 ∀t ≥ t′. In a station-

ary environment, zt will be constant, at z, and unbounded growth of output per

worker will be impossible if zh(1) ≤ 1. The fourth and final question, which is of

central importance, is whether, in a given stationary setting, both the extremes

of backwardness and steady-state growth of output per head can be outcomes in

equilibrium. This section will deal with the first two questions, albeit with an eye

on the condition zh(1) > 1, so as to leave the door open to the third and fourth

questions, which will be taken up in Section 5.

4.1 Conditions for poverty traps

We examine the choice of young adults in period t regarding et when they expect

the next generation to choose et+1 = 0. If and only if their optimal choice is et = 0

will λt = 1 ∀t be a steady state of the economy. It will be helpful to rewrite Vt as

a function of the decision variables:

Vt = u(c2t ) + χtu

(
ρntȳt+1

(1− q3t+1)(1− q2t )

)
+ νtv(zth(et)λt + 1). (11)
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The associated Lagrangian is

Φt = Vt + µt[yt − [(1− q2t ) + βnt]c
2
t − st − ρȳt]. (12)

The usual assumptions on u ensure that, at the optimum, c2t > 0. By assump-

tion, physical capital is necessary in production. Hence, if some young adults are

forecast to survive into full old age (q3t+1 < 1), so that χt > 0, then s 0
t > 0. Re-

expressing the budget constraint in normalised form, as given by (9), the associated

f.o.c. are

∂Φt

∂c2t
= u′(c2t )− µt[(1− q2t ) + βnt] = 0, (13)

∂Φt

∂et
=
δu′(c3t+1) · ntρ

(1− q2t )
· ∂ȳt+1

∂λt+1

∂λt+1

∂et
+ νtv

′(λt+1)
∂λt+1

∂et
+ µt

∂yt
∂et
≤ 0, et ≥ 0, (14)

∂Φt

∂st
=
δu′(c3t+1) · ntρ

(1− q2t )
· ∂ȳt+1

∂st
− µt = 0, (15)

where

∂λt+1

∂et
= zth

′(et)λt ,
∂ȳt+1

∂st
=
σt+1

nt
· F2

[
l̄t+1,

σt+1st
nt

]
, and

∂yt
∂et

= −(γ + wλt)nt · F1

[
lt,
σtst−1
nt−1

]
.

We seek to establish conditions that yield a steady-state path e0t = 0 ∀t. Along

such a path,

ȳt = yt(e
0
t = 0) = F

[
(1− q2t ) + ntγ,

σtst−1
nt−1

]
∀t,

since λt = zth(0)λt−1 + 1 = 1 ∀t. By definition, nt and the destruction and

mortality rates are constant. The index t may now be dropped without ambiguity.

Substituting for µt from (13) into (15), we have

δρσ[(1− q2) + βn]

(1− q2)
F2

[
(1− q2) + nγ,

σs

n

]
u′(c3)− u′(c2) = 0. (16)

We turn to the budget constraint, noting that when et = 0, (9) specialises to

[(1− q2) + βn]c2 + s = (1− ρ)F [(1− q2) + γn, σs/n], (17)

13



and (8) to

c3 =
nρ

(1− q2)(1− q3)
· F [(1− q2) + γn, σs/n]. (18)

Remark: F [(1− q2) + γn, σs/n] is the output per young adult appearing at the

start of each period. Each of them has n children, but only the fraction (1− q2) of

these adults survive early adulthood. The deceased make no claims on full income

in the following period.

Substituting for c2 and c3 from (17) and (18), respectively, in (16), we obtain an

equation in s, given the constellation (n, q2, q3, σ) and the parameters (ρ, β, γ, δ).

Denote the smallest positive value of s by sb = sb(n, q2, q3, σ).

The final step is to examine (14), with et = 0 ∀t. Substituting for µt from (13) in

(14) and rearranging terms, we have

[
ρ δF1

(
l̄,
σs

n

)
u′(c3) + bv′(1)

]
zh′(0)−

(γ + w)F1

(
l̄,
σs

n

)
u′(c2)

(1− q2) + βn
≤ 0.

Rearranging and using (16), this may be written as1− q2

σ
·
F1

(
l̄,
σs

n

)
F2

(
l̄,
σs

n

)u′(c2) +
(
(1− q2) + βn

)
bv′(1)

 zh′(0)− (γ + w)F1

(
l̄,
σs

n

)
u′(c2) ≤ 0,

or(γ + w)− 1− q2

σ
· zh′(0)

F2

(
l̄,
σs

n

)
u′(c2)F1

(
l̄,
σs

n

)
≥
[
(1− q2) + βn

]
bv′(1)zh′(0),

(19)

where F and its derivatives are evaluated at the arguments ((1− q2) + γn, σsb/n).

A necessary condition that (19) hold as a strict inequality at the hypothesised

e0t = 0 is

σF2

[
(1− q2) + γn, σsb/n

]
>

1− q2

γ + w
· zh′(0). (20)

The sum of the opportunity and direct costs of education at the margin, measured

in units of human capital, when λ = 1 is (γ +w) for each child, which is certainly

less than unity. A small investment in a child’s education will yield zh′(0) units of

14



human capital, over and above the basic endowment of unity, in the next period,

with the fraction 1− q2 of all children surviving early adulthood. If h is concave,

zh′(0) ≥ zh(1), with equality only if h is proportional to et (by assumption, h(0) =

0): that is, h′(0) is at least one. Since v is strictly concave, however, h may be

weakly convex without violating the requirement that Vt be concave over the whole

feasible set. This is particularly relevant for sufficiently small values of et; for

reflection on the educational process and how children learn suggests that h′(0) is

indeed modest in size, with admissible values less than one. In this connection,

recall that zh(1) > 1 is a necessary condition for unbounded growth in output per

head to be possible.

The marginal product of physical capital is a pure number, since capital is made

of the same stuff as output. When adjusted by the survival rate σ, it measures

the yield of investing a little more, instead, in physical capital, the proportional

claim on future full income being ρ for both forms of investment. Hence, σF2 is

the opportunity cost of investing a little in education, considering only making

provision for one’s old age. Now, for any input bundle ((1 − q2) + γn, σsb/n),

F2 will be large if the production technology is efficient in the sense of exhibiting

a high level of total factor productivity. Such a property is quite separate from

an efficient educational technology, in the sense that zh(1) > 1. It follows that

condition (20) can be satisfied if F is sufficiently efficient and both h′ and |h′′| are

sufficiently small. By inspection, if (20) does hold, then it will do likewise for all

values of λt sufficiently close to 1.

In the absence of altruism (b = 0), condition (20) is also sufficient to ensure

the existence of a locally stable, steady-state equilibrium in which there is no

investment in human capital, children work full time, and output per head is

stationary. It does not, however, rule out zh(1) > 1, and hence the possible

existence of a steady-state path along which output per head grows without limit.

If condition (20) holds strongly, then by continuity, the same conclusions will also

hold if the altruism motive is weak, since the latter implies that the r.h.s of (19)

will be small. If, however, altruism is strong, such a low-level equilibrium may well

not exist.

Conclusion: Conditions (19) and zh(1) > 1 are compatible, especially if altruism

is not too strong and the survival rates for investments in both forms of capital

are similar. If the former condition holds as a strict inequality, there will be a
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poverty trap. If both hold, escape from the trap can be followed by an asymptotic

approach to a steady-state growth path along which output per head increases

without bound.

4.2 Functional conditions allowing growth as an alterna-

tive

We seek to establish more precise conditions for the existence of poverty traps when

zh(1) > 1, so that unbounded growth is also, in principle, possible. This naturally

involves stronger assumptions. The following conditions must be satisfied.

(i) Z(et) ≡ υ[zh(et)λt+1] is concave ∀et ∈ [0, 1]. This ensures that Vt is concave

over the feasible set.

(ii) Condition (20) holds, so that ‘backwardness’ can be an equilibrium.

(iii) zh(1) > 1, to allow unbounded growth when e0t = 1 ∀t is optimal.

We next explore those conditions in detail and examine whether they can be met

simultaneously.

Condition (i). The first and second derivatives are, respectively,

Z ′ = v′ · zh′ · λt,

Z ′′ = v′′ · (zλt · h′)2 + v′ · zλt · h′′ = v′zλt

[
v′′

v′
· zλt · h′2 + h′′

]
,

= v′zλt

[
v′′

υ′
· (λt+1 − 1)

h′2

h
+ h′′

]
.

We next assume functional forms.

A1. Let v(λt+1) be iso-elastic, in the form v ≡ (λt+1 − 1)1−η/(1− η), η > 0.

Then,

Z ′′ = v′zλt

[
−η · h

′2

h
+ h′′

]
≡ H(e) · zλtv′,

so that sgn Z ′′ = sgn H(et).

A2. Let h(et) = a1et + a2e
2
t/2− a3e3t/3, (a1, a2, a3)� 0.

Then,

h′ = a1 + a2et − a3e2t , h′′ = a2 − 2a3et.
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It is seen that h′ is increasing on [ 0,min{ a2
2a3
, 1}) and decreasing on (min{ a2

2a3
, 1}, 1].

Equivalently, h′′ T 0 according as et T a2/2a3. If, further, h′(0) = a1 > 0 and

h′(1) = a1 + a2 − a3 > 0, we must have h′(et) > 0 ∀et ∈ [0, 1]: h is strictly

increasing on the whole interval.

Remark: By allowing a2 > 0, we introduce a strictly convex section of h(et) over

the interval [0, a2/2a3).

Under A2, we have

H(et) = −η · (a1 + a2et − a3e2t )2

(a1 + a2et/2− a3e2t/3)et
+ (a2 − 2a3et).

Since a1 > 0, H(et) < 0 for all et sufficiently close to zero. Indeed, |H(et)|
becomes arbitrarily large as et → 0, and since (a2 − 2a3et) declines linearly with

et, there exists a measurable set Sh = {a, η) : a� 0, a1 + a2 > a3, η > 0} s.t.

H(et) < 0 ∀et ∈ [0, 1].

Condition (ii). In condition (20), sb is chosen at et = 0, but the exact form of

h(et) has no effect on sb provided that form is also compatible with a growth path

along which e0t = 1∀t. It follows that (20) will be satisfied if a1 is sufficiently close

to zero.

Condition (iii). It remains to be demonstrated that there are members of the set

Sh satisfying not only (20), but also zh(1) > 1, that is,

z(a1 + a2/2− a3/3) > 1. (21)

Using this inequality in the r.h.s. of (20), we have

1− q2

γ + w
· za1 >

1− q2

γ + w
· a1
a1 + a2/2− a3/3

.

Choose a s.t. (21) just holds, i.e., the growth rate g ≡ zh(1)− 1 is barely positive,

so that the r.h.s. of (20) is arbitrarily close to

1− q2

γ + w
· a1
a1 + a2/2− a3/3

.
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As a final step, consider the following members of the family defined by A2 :

a1 = 0.1, a2 = a3 = 1;
a1

a1 + a2/2− a3/3
=

3

8
,

a1 = 0.1, a2 = 2, a3 = 1;
a1

a1 + a2/2− a3/3
=

3

23
.

In the latter case, the r.h.s. of (20) is barely larger than ((1 − q2)/(γ + w)) 3
23

,

which is surely smaller than the l.h.s. of (20) if F (·) is fairly productive and the

destruction rate 1− σ is sufficiently low.

Conclusion. With this final step we have established that if the sub-utility function

v is iso-elastic, F is sufficiently productive and 1 − σ is sufficiently small, then

there exists a measurable subset of the family of functions satisfying A2 such that

conditions (i), (ii) and (iii) are satisfied.

5 Steady-state Growth Paths

We now turn to the opposite extreme, in which all children have been fully edu-

cated for countless generations and the human capital of a young adult is growing

steadily at the intergenerational rate g = zh(1) − 1 > 0, as are c2t , c
3
t and st.

Correspondingly, inputs of human and physical capital and aggregate output are

all growing at the rate n(zh(1) − 1). Under what conditions, if any, does such a

hypothetical growth path exist?

Suppose the economy is on such a path. The pairwise marginal rates of transfor-

mation among c2t , et and st are obtained from the budget constraint (9). For any

value of et ∈ [0, 1],

MRTce = − (1− q2) + βn

n(wλt + γ)F1

[
lt,

σst−1

n

] , (22)

MRTse = − 1

n(wλt + γ)F1

[
lt,

σst−1

n

] , (23)

MRTcs = −[(1− q2) + βn], (24)

where F1

[
lt,

σst−1

n

]
will be constant along the hypothesised path.
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Turning to preferences, total differentiation of (11) yields

dVt = u′(c2t ) · dc2t + n

(
δρF1

(
l̄t+1,

σst
n

)
u′(c3t+1) + bv′(λt+1)zh

′(et)λt

)
· det

+
δρσ

1− q2
F2

(
l̄t+1,

σst
n

)
u′(c3t+1) · dst .

The corresponding marginal rates of substitution are

MRSce = − u′(c2t )

n
(
δρF1

(
l̄t+1,

σst
n

)
u′(c3t+1) + bv′(λt+1)

)
zh′(et)λt

≡ − u′(c2t )

Qtzh′(et)λt
≡ −Rt ,

(25)

MRSse = −
δρσF2

(
l̄t+1,

σst
n

)
u′(c3t+1)

(1− q2)Qtzh′(et)λt
, (26)

MRScs = − (1− q2)u′(c2t )
δρσF2

(
l̄t+1,

σst
n

)
u′(c3t+1)

, (27)

where the marginal products F1

(
l̄t+1,

σst
n

)
and F2

(
l̄t+1,

σst
n

)
) are constant along the

hypothesised path. The ratio c3t/c
2
t will be constant, whose value is denoted by κ.

As in Section 4.2, we assume a specific functional form, now for the sub-utility

function u.

A3. Let u be iso-elastic: u = c1−ξ/(1− ξ).
Then,

u′ = c−ξ, u
′′

= −ξc−(ξ+1), and u′′c = −ξc−ξ = −ξu′.

Hence, along the hypothesised path, u′(c2t )/u
′(c3t+1) = [κ(1 + g)]ξ. Since c2t > 0

and st > 0, it follows from (24) and (27) that

(1− q2) + βn =
(1− q2)[κ(1 + g)]ξ

δρσF2

(
l̄t+1,

σst
n

) . (28)

Given that steady-state growth has been long established, λt is so much larger than

γ that F2

(
l̄t+1,

σst
n

)
depends only on the ratio (1 − q2)λt+1/(σst/n) = λt+1/kt+1,

which is a constant along the path in question. Hence, given (n, q2, q3, σ; β, δ, ρ)

and the technologies zh and F , (28) yields the (unique) steady-state value of λt/kt.

This is a central result.
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We now examine the marginal condition involving (c2t , et). That is to say, we

compare the levels of MRTce and MRSce along the path in question, noting that

it involves et = 1∀t. Differentiating (9) and (25) totally and noting that

dst/st = dkt/kt = dλt/λt = dc2t/c
2
t (29)

along this path, we obtain, after some manipulation,

dRt

Rt

=

[
u
′′
(c2t )c

2
t

u′(c2t )
·
[
(1− q2 − wn)F1

(
lt,

σst−1

n

)
− ρF1

(
l̄t,

σst−1

n

)]
λt − st

[(1− q2) + βn]c2t
− dQt

dλt

λt
Qt

− 1

]
dλt
λt

.

(30)

Total differentiation of Qt = n
(
δρF1

(
l̄t+1,

σst
n

)
u′(c3t+1) + bv′(λt+1)

)
yields, noting

(29) once more,

dQt = n

[
δρ

(
(1− q2)F11

(
l̄t+1,

σst
n

)
u′(c3t+1) +

u
′′
(c3t+1)c

3
t+1

zh(1)λt
F1

(
l̄t+1,

σst
n

))
+ bv′′(λt+1)

]
· zh(1) dλt + δρσF12

(
l̄t+1,

σst
n

)
u′(c3t+1)dst

≡ A′ · zh(1) · dλt + δρσF12

(
l̄t+1,

σst
n

)
u′(c3t+1)dst . (31)

Recalling A1, we have

v
′′
(λt+1) = −η v

′(λt+1)

λt+1 − 1
= −ηv

′(λt+1)

zh(1)λt
. (32)

We examine next the expression
dQt

dλt
· λt
Qt

on the r.h.s. of (30). From (31), we have

dQt

dλt
· λt
Qt

=
A′zh(1) · λt + δρσF12

(
l̄t+1,

σst
n

)
u′(c3t+1)st

n
(
δρF1

(
l̄t+1,

σst
n

)
u′(c3t+1) + bv′(λt+1)

) .

Collecting terms in the numerator involving u′(c3t+1) and recalling A3, we obtain

J ≡ nδρ
[
(1− q2)λt+1F11

(
l̄t+1,

σst
n

)
− ξF1

(
l̄t+1,

σst
n

)
+
σst
n
F12(l̄t+1,

σst
n

)
]
.

Since F1

(
l̄t+1,

σst
n

)
and F2

(
l̄t+1,

σst
n

)
are homogeneous of degree zero, it follows from
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Euler’s Theorem that

[(1− q2)λt+1 + nγ]F11

(
l̄t+1,

σst
n

)
+
σst
n
F12

(
l̄t+1,

σst
n

)
= 0,

so that for sufficiently large λt, J reduces to −nξδρF1

(
l̄t+1,

σst
n

)
. Hence, substitut-

ing for v′′(λt+1) from (32), we obtain the elasticity of Qt w.r.t. λt:

dQt

dλt

λt
Qt

=
−ξδρF1

(
l̄t+1,

σst
n

)
u′(c3t+1)− ηbv′(λt+1)

δρF1

(
l̄t+1,

σst
n

)
u′(c3t+1) + bv′(λt+1)

.

By hypothesis, (λt, st) are growing at the rate g = zh(1)−1. Hence, this elasticity

can be expressed in the form

dQt

dλt
· λt
Qt

= −ξA+ ηB(1 + g)−(η−ξ)

A+B(1 + g)−(η−ξ)
, (33)

where A and B are positive constants.

There remains the expression multiplying u
′′
(c2t ) · c2t/u′(c2t ) (= −ξ) on the right-

hand side of (30), namely,

M ≡
[
(1− q2 − wn)F1

(
lt,

σst−1

n

)
− ρF1

(
l̄t,

σst−1

n

)]
λt − st

[(1− q2) + βn]c2t
, (34)

which is a constant in virtue of the hypothesis that ct, st and λt are growing at

the same rate. Recalling (9) and that F is homogeneous of degree one, a little

manipulation reveals that M >
< 1 according as

ρF2

(
l̄t,
σst−1
n

)
= ρF2((1− q2)λt + γn, (1− q2)kt) >< F2[(1− q2 −wn)λt, (1− q2)kt)].

In practice, wn is very unlikely to exceed 0.1, and on such a growth path γn will

be negligible in comparison with λt. The fractional claim ρ on full income is also

rather unlikely to exceed one-third. It follows that, unless human and physical

capital are extremely poor substitutes in production and their steady state ratio

kt/λt is very small, so that F12 would be correspondingly very large, M is almost

surely less than one, albeit plausibly rather close to one. For the ratio

(1− q2)
(
F2

(
lt,
σst−1
n

)
− ρF2

(
l̄t,
σst−1
n

))
kt
/

[(1− q2) + βn]ct
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involves a difference in capital’s share as the numerator, but the combined con-

sumption of a young adult and children as denominator, so that their ratio is surely

rather small.

The final step is to establish conditions under which the choice et = 1, once

attained, remains optimal as λt grows without bound at the rate g. It is seen from

(22) that when et = 1 thus holds, |MRTce| goes to zero at the rate g, so that

limλt→∞

[
d(log |MRTce|)

d(log λt)

]
= −1. To maintain the optimality of et = 1, however,

the |MRSce| (= Rt) must fall at least as fast as the |MRTce| as λt grows. We now

rewrite (30) as

dRt

dλt

λt
Rt

= −ξM +
ξA+ ηB(1 + g)−(η−ξ)

A+B(1 + g)−(η−ξ)
− 1.

It follows that the required condition is

ξM ≥ ξA+ ηB(1 + g)−(η−ξ)

A+B(1 + g)−(η−ξ)
. (35)

If, as is almost surely the case in practice, M < 1, it is seen that this condition

will be violated if ξ = η.

Examination of condition (35) reveals that the said condition requires that ξM ≥ η

if M < 1, though sufficiency is also ensured only when (2M − 1)ξ ≥ η. If M is

close to 1, then ξ may be close to η, even though ξ must be greater than η. What

is the intuition for this result? If there is only human capital, it can be shown

that the required condition is ξ ≥ η, with equality as the limiting case. Given

the option of providing for old age though saving and the social rule expressed

by the parameter ρ, educating the children becomes less pressing in this regard,

so that altruism has to work that much harder to maintain et = 1; for λt+1 is an

argument of v(·), but kt+1 (= σst/n(1− q2)) is not. It follows that v must be less

strongly concave than u if steady-state growth with a fully educated population

is to be possible. If, however, parents are perfectly selfish (η = 0), condition (35)

specialises to

M ≥ A

A+B(1 + g)ξ
,

which is more easily satisfied, the r.h.s. being clearly less than one. This rather

paradoxical result stems from the assumption that altruism is expressed only
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through investment in education, parents making transfers of the aggregate good

neither inter vivos nor as bequests.

6 Conclusions

It is not difficult to think of conditions that will keep a society in a state of

permanent backwardness. Unremitting warfare and communicable diseases in the

absence of public health measures, together with the privation that accompanies

warfare and diseases, will surely suffice to bring about a Hobbesian existence, even

when productive technologies are available. What we have established, however, is

that there are stationary constellations of war losses and premature adult mortality

such that both backwardness, in the sense there is no investment in human capital

through schooling, and steady growth with a fully educated population are possible

equilibria. The associated poverty trap is thereby precisely characterised.

Parents’ altruism towards their children can exert a decisive influence on the out-

come. If sufficiently strong, it can rule out backwardness in environments in which

the hazards of destruction are such as to keep a selfish population in that condi-

tion for good. That is no great surprise. Where attaining – and maintaining –

steady state growth is concerned, however, a rather paradoxical result holds. If,

for whatever reason, parents express their altruism only in the form of investment

in their children’s education, their preferences over the resulting outcome must be

more weakly concave than those over consumption. A strong measure of selfish-

ness, which implies that provision for old age is the dominant or sole motive for

investment, may then ensure the existence of a such a steady-state growth path

when a fair measure of altruism would rule it out. Balanced growth must hold in

all respects.

To close, it must be remarked that we have not explored environments in which

cohort mortality rates and war losses are stochastic. To give a simple example,

war may break out in the next period, and if it does so, some fraction of the capital

stock will be destroyed and mortality will rise. The resulting stochastic dynamics

will be the subject of future research.
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