

Natural Disasters, Financial Crisis and Global Agriculture

Aziz Karimov, UNU –WIDER YongFu Huang, UNU-WIDER

Helsinki 2012

- There will be more, and more intense, extreme events such as droughts, floods and hurricanes;
- There is a lot of uncertainty about the location and magnitude of these changes;
- Developing countries are particularly vulnerable;
- Climate change has the potential to act as a 'risk multiplier' in some of the poorest parts of the world;

- Most development activities are sensitive to climate
- Current climate variability
- Future climate change

• Examples:

- Rain-fed agriculture is highly dependent on rainfall patterns
- Agroforestry and forestry are sensitive to wind storms
- Forest productivity depends on rainfall
- Drinking water supply is highly dependent on rainfall and temperature
- Infrastructure is sensitive to flooding

Source: www.cifor.org

Global Mean Temperature

Source: IPCC, 2007 Source: IPCC, 2001

- Described as a change of climate which is attributed to human activity that transforms the composition of the global atmosphere;
- Climate change adds an extra burden to the attainment of the sustainable development objectives;
- Almost every sector is likely to be adversely impacted by climate change;
- The poorest people will likely suffer the most from climate change;
- The evidence clearly shows that ignoring climate change will eventually damage economic growth;

Background

- The intergovernmental panel on climate change: The climate of Earth would be 2–6 C warmer than in the pre-industrial era by the end of the 21st century, due to increases in greenhouse gases.
 - the warmest period on Earth for at least the last 1000 years, and probably the last 100 000 years.
- The large-scale warming is expected to be accompanied by increased frequency and/or intensity of extreme events, such as heat waves, heavy rainfall, and floods.
- The agricultural sector in both developing and developed countries is highly sensitive to climate variability and weather extremes, such as droughts, floods and severe storms.
- Despite tremendous improvements in technology and crop yield potential, food production remains highly dependent on climate, because solar radiation, temperature, and precipitation are the main drivers of crop growth.

Background

- The financial crisis had a direct impact on commodity markets. For instance, declines in farm income and agricultural production values was a consequence of the commodity price declines.
- The speed with which global economic conditions have altered has been unprecedented, and has left many in agriculture uncertain about future prospects.
- High agricultural commodity prices fell during the second half of 2008, and many markets have since struggled to recover. That agricultural commodity prices would be suddenly impacted by a crash in world stock markets was a big surprise.
- However, economists showed close linkage between grain and oil prices, as the world turns to biofuels as a source of energy.

Objectives

- Various impact studies have considered the effects on global food production and prices of projected long-run trends in temperature, precipitation and CO² concentrations caused by climate change.
- Against a background of multiple crises—climate, fuel, food—the global financial crisis of 2007–09 has caused enormous damage to the world economy, resulting in the most severe global recession in generations.
- The financial crisis spread rapidly around the globe. Nearly all stock markets experienced bursts of volatility. Lin (2009, p. 2) points out that the current economic downturn is "possibly turning a short-run macroeconomic adjustment into a long-term development problem." But empirical evidence on the impact of economic volatility on global agricultural production remains sparse.
- This study looks at whether inflation and output volatility (financial crisis indicators) as well as drought and flood (extreme weather indicators) have a significant impact on global agricultural production and technical efficiency

Methodology: Stochastic Frontier Analysis

- The object is to estimate not the average production or average cost, but the maximum possible production given a set of inputs or the minimum possible cost of a set of outputs.
- OLS regression estimates the mean of the dependent variable conditional on the explanatory variables;
- It is a *parametric* technique that uses standard production function methodology.
- The approach explicitly recognizes that production function represents technically maximum feasible output level for a given level of output.

Stochastic Frontier: Model Specification

OLS: $q_i = \beta_0 + \beta_1 x_i + v_i$

Deterministic: $q_i = \beta_0 + \beta_1 x_i - u_i$

SFA: $q_i = \beta_0 + \beta_1 x_i + v_i - u_i$

where

 v_i = "noise" error term - symmetric (eg. normal distribution)

 u_i = "inefficiency error term" - non-negative (eg. half-normal distribution)

- We start with the general production function as before and add a new term that represents technical inefficiency.
 - This means that actual output is less than what is postulated by the production function specified before.
 - We achieve this my subtracting *u* from the production function
 - Then we have $\ln q_i = \beta_0 + \beta_1 \ln x_i + v_i u_i$

Stochastic Frontier: Model Specification

$$q_i = \exp(\beta_0 + \beta_1 \ln x_i) \times \exp(v_i) \times \exp(-u_i)$$

$$\text{deterministic}$$

$$\text{component}$$

$$\text{inefficiency}$$

In general, we write the stochastic frontier model with several inputs and a general functional form (which is linear in parameters) as

$$\ln q_i = \mathbf{x}_i' \mathbf{\beta} + v_i - u_i$$

- We stipulate that u_i is a non-negative random variable
- By construction the inefficiency term is always between 0 and 1.
- This means that if a firm is inefficient, then it produces less than what is expected from the inputs used by the firm at the given technology.
- We can define technical efficiency as the ratio of "observed" or "realized output" to the stochastic frontier output

$$TE_i = \frac{q_i}{\exp(\mathbf{x}_i'\mathbf{\beta} + v_i)} = \frac{\exp(\mathbf{x}_i'\mathbf{\beta} + v_i - u_i)}{\exp(\mathbf{x}_i'\mathbf{\beta} + v_i)} = \exp(-u_i)$$

Panel data models

- Data on N firms over T time periods
- Investigate technical efficiency change (TEC)
- Investigate technical change (TC)
- More data = better quality estimates
- Less chance of a one-off event (eg. climatic) influencing results
- Can use standard panel data models
 - no need to make distributional assumption
 - but must assume TE fixed over time
- The model: i=1,2,...N (cross-section of firms); t=1,2...T (time points)

$$\ln y_{it} = x_{it}\beta + v_{it} - u_{it}; v_{it} \approx N(0, \sigma_v^2); u_{it} \approx N^+(0, \sigma_u^2)$$

Panel data models

Some Special cases:

- 1. Firm specific effects are time invariant: $u_{it} = u_i$.
- 2. Time varying effects: Kumbhakar (1990)

$$u_{it} = \left[1 + \exp(bt + ct^2)\right]^{-1} u_i$$

3. Time-varying effects with convergence – Battese and Coelli (1992)

$$u_{it} = \left[\exp \left\{ -\eta(t-T) \right\} \right] u_i$$

Sign of η is important. As t goes to T, u_{it} goes to u_i .

Inefficiency Effects Model

• Inefficiency effects model (Battese, Coelli 1995)

$$\ln y_{it} = x_{it}\beta + v_{it} - u_{it}; u_{it} = N_{+}(z_{it}\delta, \sigma_{u}^{2})$$

where δ is a vector of parameters to be estimated.

Data Description

- 135 Countries
- Dependent variables "5-year-average" (FAO DATA 1980-2010)
- o tvalue Net agricultural production value (constant 2004-2006 1000 I\$, Crops (PIN) + (Total)) (1000 Int. \$)
- Basic repressors "5-year-average" (FAO DATA 1980-2010)
- labor Total economically active population in Agriculture, the sum of female and male
- o arable Arable land (hectares)
- fert Fertilizer consumption (UREA in tonnes)
- o mach Agricultural machinery (total tractors) from FAO
- Climate Change variables (International Disaster Database 1980-2010)
- o dr_damage estimated damage costs from drought in US\$(,000)
- o fd_damage estimated damage costs from flooding in US\$(,000)
- Financial Crisis variables (WDR 1980-2010) "volatility or standard deviation over t-year"
- o vgr GDP per capita growth (annual %) output volatility
- o vinfl Inflation, GDP deflator (annual %) inflation volatility

Empirical Results and Discussion

Full Sample				High Income Countries		Developing Countries			Low Income Countries		Middle Income Countries	
tvalue	Coef.	P>z	Coef.	P>z		Coef.	P>z	Co	ef.	P>z	Coef.	P>z
vinfl	-0.048	0.000	-0.045	0.054		-0.041	0.000		0.006	0.743	-0.049	0.000
vgr	-0.050	0.002	-0.080	0.018		-0.038	0.028		-0.046	0.052	-0.019	0.393
dr_damage	0.002	0.472	0.002	0.485		0.004	0.217		-0.017	0.023	0.007	0.035
fd_damage	0.009	0.001	-0.001	0.799		0.008	0.004		-0.003	0.505	0.011	0.002
arable	0.338	0.000	0.182	0.205		0.292	0.000		0.323	0.002	0.310	0.000
labor	0.346	0.000	-0.037	0.644		0.477	0.000		0.816	0.000	0.466	0.000
fert	0.104	0.000	0.111	0.000		0.090	0.000		0.043	0.029	0.094	0.000
mach	0.109	0.000	0.035	0.435		0.070	0.005		-0.014	0.714	0.040	0.206
_cons	6.061	0.000	13.260	0.000		6.303	0.000		3.031	0.007	6.326	0.000
/mu	1.088	0.000	0.883	0.693		1.305	0.000		0.734	0.027	1.010	0.000
/Insigma2	-0.586	0.008	1.702	0.111		-0.541	0.013		-1.314	0.007	-0.432	0.165
/ilgtgamma	2.877	0.000	6.227	0.000		2.984	0.000		2.779	0.000	3.061	0.000
sigma2	0.556		5.487			0.582			0.269		0.649	
gamma	0.947		0.998			0.952			0.942		0.955	
sigma_u2	0.527		5.476			0.554			0.253		0.620	
sigma_v2	0.030		0.011			0.028			0.016		0.029	
TE	0.625		TE	0.966		TE	0.644	TE		0.889	TE	0.764

Empirical Results and Discussion

	Estimate	Std.	z value	$\mathbf{D}_{r}(\mathbf{x} \mathbf{z})$		Estimate	Std.	z value	$\mathbf{Dr}(\sim \mathbf{z})$
	Estimate	LHOI	z value	Pr(> z)		Estimate	Liioi	z value	Pr(> z)
(Intercept)	0.063	0.006	10.754	0.000	(Intercept)	0.001	0.000	6.316	0.000
arabledum_high	0.760	0.022	35.073	0.000	arabledum_low	0.692	0.004	154.140	0.000
labordum_high	0.267	0.023	11.627	0.000	labordum_low	0.875	0.030	29.186	0.000
fertdum_high	0.181	0.026	7.025	0.000	fertdum_low	-0.147	0.005	-27.688	0.000
machdum_high	0.062	0.031	2.003	0.045	machdum_low	-0.188	3 0.020	-9.339	0.000
Z_(Intercept)	-0.916	0.072	-12.696	0.000	Z_(Intercept)	-4.410	0.164	-26.823	0.000
Z_vgrdum_high	0.455	0.048	9.533	0.000	Z_vgrdum_low	1.179	0.036	32.446	0.000
Z_vinfldum_high	0.024	0.046	0.530	0.596	Z_vinfldum_low	1.245	0.043	29.166	0.000
Z_dr_damagedum_ high	0.056	0.004	13.004	0.000	Z_dr_damagedum_ low	0.019	0.015	1.291	0.197
Z_fd_damagedum_					Z_fd_damagedum_				
high	0.153	0.004	35.952	0.000	low	0.140	0.010	13.482	0.000
sigmaSq	0.09	0.00	25.99	0.00	sigmaSq	0.48	0.02	24.10	0.00
gamma	0.97	0.01	71.94	0.00	gamma	0.99	0.00	8189405.00	0.00