Carbon sanctuaries and development: preserving tropical forests in a rural vs diversified economy

Jean-Marc Bourgeon¹ and Hélène Ollivier²

September 29th 2012 UNU-WIDER conference

¹INRA and Ecole Polytechnique

- Agricultural expansion implies deforestation through land conversion
- Deforesting is responsible for large GHG emissions and constitutes the main source of emissions for forest-abundant developing countries
- Developing countries will reduce their emissions only if they are compensated for the opportunity costs: REDD mechanism (Reduced Emissions from Deforestation and Degradation)
- This notion of opportunity costs encompasses two potential meanings: either making part of the rural labor force idle or shifting it toward less land dependent sectors which are also less profitable

- Agricultural expansion implies deforestation through land conversion
- Deforesting is responsible for large GHG emissions and constitutes the main source of emissions for forest-abundant developing countries
- Developing countries will reduce their emissions only if they are compensated for the opportunity costs: REDD mechanism (Reduced Emissions from Deforestation and Degradation)
- This notion of opportunity costs encompasses two potential meanings: either making part of the rural labor force idle or shifting it toward less land dependent sectors which are also less profitable

- Agricultural expansion implies deforestation through land conversion
- Deforesting is responsible for large GHG emissions and constitutes the main source of emissions for forest-abundant developing countries
- Developing countries will reduce their emissions only if they are compensated for the opportunity costs: REDD mechanism (Reduced Emissions from Deforestation and Degradation)
- This notion of opportunity costs encompasses two potential meanings: either making part of the rural labor force idle or shifting it toward less land dependent sectors which are also less profitable

- Agricultural expansion implies deforestation through land conversion
- Deforesting is responsible for large GHG emissions and constitutes the main source of emissions for forest-abundant developing countries
- Developing countries will reduce their emissions only if they are compensated for the opportunity costs: REDD mechanism (Reduced Emissions from Deforestation and Degradation)
- This notion of opportunity costs encompasses two potential meanings: either making part of the rural labor force idle or shifting it toward less land dependent sectors which are also less profitable

- Using a model where deforestation is induced by trade and where
 - Farmers allocate their unit labor between land clearing or maintenance and production (and harvesting NTFPs)
 - Two-sector growth model (agriculture, industry) with two dynamics on specific factors (land, capital)
- we compare the costs of two international transfer mechanisms
 - Untied mechanism that reduces the amount of land per rural worker
 - Tied mechanism that shifts rural workers toward the alternative sector

- Using a model where deforestation is induced by trade and where
 - Farmers allocate their unit labor between land clearing or maintenance and production (and harvesting NTFPs)
 - Two-sector growth model (agriculture, industry) with two dynamics on specific factors (land, capital)
- we compare the costs of two international transfer mechanisms
 - Untied mechanism that reduces the amount of land per rural worker
 - Tied mechanism that shifts rural workers toward the alternative sector

Deforestation for agricultural purpose

- Land allocation between forest and agricultural use:
 - land endowment normalized to \bar{n} units
 - $\bar{n} n_t$ lands left in forest, n_t agricultural land at date t
 - initially, large forest
- At individual level, representative farmer allocates her one unit of labor between farming and maintaining/clearing land
 - Production function: $f(\ell_{it}^a, n_{it}) = n_{it}^{\theta} (\ell_{it}^a)^{1-\theta}$
 - Individual land dynamics: $n_{it} = \phi \ell_{it}^d + (1 \gamma)n_{it-1}$
 - where $\phi>0$: marginal productivity of labor in clearing land $0<\gamma<1$: land degradation in the absence of maintenance (biological growth of forest stock)
- Facing a credit constraint, farmers do not optimize their returns inter-temporally when deciding on clearing land.

Deforestation for agricultural purpose

- Land allocation between forest and agricultural use:
 - land endowment normalized to \bar{n} units
 - $\bar{n} n_t$ lands left in forest, n_t agricultural land at date t
 - initially, large forest
- At individual level, representative farmer allocates her one unit of labor between farming and maintaining/clearing land
 - Production function: $f(\ell_{it}^a, n_{it}) = n_{it}^{\theta} (\ell_{it}^a)^{1-\theta}$
 - Individual land dynamics: $n_{it} = \phi \ell_{it}^d + (1 \gamma) n_{it-1}$
 - where $\phi > 0$: marginal productivity of labor in clearing land $0 < \gamma < 1$: land degradation in the absence of maintenance (biological growth of forest stock)
- Facing a credit constraint, farmers do not optimize their returns inter-temporally when deciding on clearing land.

Deforestation for agricultural purpose

- Land allocation between forest and agricultural use:
 - land endowment normalized to \bar{n} units
 - $\bar{n} n_t$ lands left in forest, n_t agricultural land at date t
 - initially, large forest
- At individual level, representative farmer allocates her one unit of labor between farming and maintaining/clearing land
 - Production function: $f(\ell_{it}^a, n_{it}) = n_{it}^{\theta} (\ell_{it}^a)^{1-\theta}$
 - Individual land dynamics: $n_{it} = \phi \ell_{it}^d + (1 \gamma) n_{it-1}$
 - where $\phi>0$: marginal productivity of labor in clearing land $0<\gamma<1$: land degradation in the absence of maintenance (biological growth of forest stock)
- Facing a credit constraint, farmers do not optimize their returns inter-temporally when deciding on clearing land.

Two-sectors economy

- Given the available technology, each farmer deforests until he owns $n^* = \frac{\theta \phi}{1 \theta(1 \gamma)} < \bar{n}$ acres.
- At the aggregate level, L_t farmers can
 - increase the total agricultural land: $n_t = \sum_i n_{it} = \theta \phi L_t + \theta (1 - \gamma) n_{t-1}$
 - produce: $y_{at} = \kappa n_t$, where $\kappa \equiv [(1 - \theta)/(\phi \theta)]^{1-\theta}$ per acre yield
- Manufacturing sector with a specific factor, capital
 - Production: $y_{mt} = G(k_t, L_{mt}) = L_{mt}^{\alpha} k_t^{1-\alpha}, \ 0 < \alpha < 1$
 - Investment I_t increases the stock of capital, given the rate of depreciation δ : $k_{t+1} = I_t + (1 \delta)k_t$
- Constant total labor force: $L_t + L_{mt} = 1$. $\forall t$

Two-sectors economy

- Given the available technology, each farmer deforests until he owns $n^* = \frac{\theta \phi}{1 \theta(1 \gamma)} < \bar{n}$ acres.
- At the aggregate level, L_t farmers can
 - increase the total agricultural land: $n_t = \sum_i n_{it} = \theta \phi L_t + \theta (1 \gamma) n_{t-1}$
 - produce: $y_{at} = \kappa n_t$, where $\kappa \equiv [(1 - \theta)/(\phi \theta)]^{1-\theta}$ per acre yield
- Manufacturing sector with a specific factor, capital
 - Production: $y_{mt} = G(k_t, L_{mt}) = L_{mt}^{\alpha} k_t^{1-\alpha}, \ 0 < \alpha < 1$
 - Investment I_t increases the stock of capital, given the rate of depreciation δ : $k_{t+1} = I_t + (1 \delta)k_t$
- Constant total labor force: $L_t + L_{mt} = 1$. $\forall t$

Two-sectors economy

- Given the available technology, each farmer deforests until he owns $n^* = \frac{\theta \phi}{1 \theta(1 \gamma)} < \bar{n}$ acres.
- At the aggregate level, L_t farmers can
 - increase the total agricultural land: $n_t = \sum_i n_{it} = \theta \phi L_t + \theta (1 \gamma) n_{t-1}$
 - produce: $y_{at} = \kappa n_t$, where $\kappa \equiv [(1 - \theta)/(\phi \theta)]^{1-\theta}$ per acre yield
- Manufacturing sector with a specific factor, capital
 - Production: $y_{mt} = G(k_t, L_{mt}) = L_{mt}^{\alpha} k_t^{1-\alpha}, \ \ 0 < \alpha < 1$
 - Investment I_t increases the stock of capital, given the rate of depreciation δ: k_{t+1} = I_t + (1 - δ)k_t
- Constant total labor force: $L_t + L_{mt} = 1$, $\forall t$

Trade-induced deforestation

- Whereas the forest-abundant economy is diversified in autarky (preferences for both goods), trade liberalization increases deforestation if the economy has a comparative advantage in agriculture
- Given world price *p*, the social planner maximizes the present value of national product minus capital investment:

Propositior

When the economy opens to trade, it stays diversified only if $p = p_d$, where $p_d \equiv \alpha[(1 - \beta\theta(1 - \gamma))/\theta\phi\kappa][(1 - \alpha)/(r + \delta)]^{(1-\alpha)/\alpha}$. Otherwise,

- If p > p_d, it specializes in agriculture. The surface devoted to agriculture increases progressively toward the steady state level n*.
 - If $p < p_d$, it specializes in industry. The productive capital accumulates toward the steady state level $k_l = [(1 \alpha)/(r + \delta)]^{1/\alpha}$.

Trade-induced deforestation

- Whereas the forest-abundant economy is diversified in autarky (preferences for both goods), trade liberalization increases deforestation if the economy has a comparative advantage in agriculture
- Given world price p, the social planner maximizes the present value of national product minus capital investment: $V(k_t, n_{t-1}) = \max_{L, J_t} \{p \kappa n_t + G(k_t, 1 L_t) I_t + \beta V(k_{t+1}, n_t)\}$

Proposition

When the economy opens to trade, it stays diversified only if $p = p_d$, where $p_d \equiv \alpha[(1 - \beta\theta(1 - \gamma))/\theta\phi\kappa][(1 - \alpha)/(r + \delta)]^{(1-\alpha)/\alpha}$. Otherwise,

- If p > p_d, it specializes in agriculture. The surface devoted to agriculture increases progressively toward the steady state level n*.
 - If $p < p_d$, it specializes in industry. The productive capital accumulates toward the steady state level $k_l = [(1 \alpha)/(r + \delta)]^{1/\alpha}$.

Trade-induced deforestation

- Whereas the forest-abundant economy is diversified in autarky (preferences for both goods), trade liberalization increases deforestation if the economy has a comparative advantage in agriculture
- Given world price p, the social planner maximizes the present value of national product minus capital investment:

$$V(k_t, n_{t-1}) = \max_{L_t, I_t} \left\{ p \kappa n_t + G(k_t, 1 - L_t) - I_t + \beta V(k_{t+1}, n_t) \right\}$$

Proposition

When the economy opens to trade, it stays diversified only if $p = p_d$, where $p_d \equiv \alpha [(1 - \beta \theta (1 - \gamma))/\theta \phi \kappa] [(1 - \alpha)/(r + \delta)]^{(1-\alpha)/\alpha}$. Otherwise,

- If p > p_d, it specializes in agriculture. The surface devoted to agriculture increases progressively toward the steady state level n*.
 - If $p < p_d$, it specializes in industry. The productive capital accumulates toward the steady state level $k_l = [(1 \alpha)/(r + \delta)]^{1/\alpha}$.

Conditional transfer on preserving forest

- Focus on $p > p_d$: land-dependent growth
- International institution (GEF, WB) offers a transfer defined by (s_0^J, s^J) to reduce emissions from deforestation:

$$S(n_t) = s_0^J - s^J \max\{0, n_t - \hat{n}\}, \ J = \{T, U\}$$

- $\hat{n} \in [0, n^*]$ environmental constraint in terms of agricultural land
- s₀^J maximum level of transfer negotiated between the institution and the developing country
- s^J exogenous and time invariant
- Social planner's objective is modified by the transfer:

$$\max_{L_{t},l_{t}} \{ p \kappa n_{t} + G(k_{t}, 1 - L_{t}) + S(n_{t-1}) - l_{t} + \beta V(k_{t+1}, n_{t}) \}$$

Conditional transfer on preserving forest

- Focus on p > p_d: land-dependent growth
- International institution (GEF, WB) offers a transfer defined by (s_0^J, s^J) to reduce emissions from deforestation:

$$S(n_t) = s_0^J - s^J \max\{0, n_t - \hat{n}\}, J = \{T, U\}$$

- $\hat{n} \in [0, n^*]$ environmental constraint in terms of agricultural land
- s_0^J maximum level of transfer negotiated between the institution and the developing country
- s^J exogenous and time invariant
- Social planner's objective is modified by the transfer: $V(k_t, n_{t-1}) = \max_{t \in \mathcal{L}} \{p_{K_t} p_{t+1} + G(k_t, 1 L_t) + S(n_{t+1}) I_t + \beta V(k_{t+1}) \}$

Conditional transfer on preserving forest

- Focus on p > p_d: land-dependent growth
- International institution (GEF, WB) offers a transfer defined by (s_0^J, s^J) to reduce emissions from deforestation:

$$S(n_t) = s_0^J - s^J \max\{0, n_t - \hat{n}\}, J = \{T, U\}$$

- $\hat{n} \in [0, n^*]$ environmental constraint in terms of agricultural land
- s_0^J maximum level of transfer negotiated between the institution and the developing country
- s^J exogenous and time invariant
- Social planner's objective is modified by the transfer:

$$V(k_t, n_{t-1}) = \max_{L_{t}, l_t} \{ p \kappa n_t + G(k_t, 1 - L_t) + \frac{S(n_{t-1}) - l_t + \beta V(k_{t+1}, n_t) \}$$

Comparing two types of opportunity costs

- Tied mechanism shifts part of the labor force toward the less profitable sector
 - Once farmers have deforested n̂ acres, incentive to stop deforesting provided by a per acre reduction in the payment:
 s^T(p) = κ(p - p_d)/β
 - Transfer depends on the discrepancy between actual world price and the relative price required for the economy to diversify
- Untied mechanism modifies the optimal allocation of rural labor between production and land maintenance: congestion effect
 - The land use constraint reduces the maintenance effort to $\hat{\ell}^d = \gamma \hat{n}/\phi$ and rural output to $\hat{y} = \hat{n}^\theta (1 \hat{\ell}^d)^{1-\theta}$ even when the entire population is rural
 - Incentive to stop deforesting: $s^U(\hat{n}) = \frac{p}{\phi \hat{n}} \left(\frac{\phi \hat{n}}{\phi \gamma \hat{n}} \right)^{\theta} (\theta \phi \gamma \hat{n})$

Comparing two types of opportunity costs

- Tied mechanism shifts part of the labor force toward the less profitable sector
 - Once farmers have deforested n̂ acres, incentive to stop deforesting provided by a per acre reduction in the payment:
 s^T(p) = κ(p - p_d)/β
 - Transfer depends on the discrepancy between actual world price and the relative price required for the economy to diversify
- Untied mechanism modifies the optimal allocation of rural labor between production and land maintenance: congestion effect
 - The land use constraint reduces the maintenance effort to $\hat{\ell}^d = \gamma \hat{n}/\phi$ and rural output to $\hat{y} = \hat{n}^\theta (1 \hat{\ell}^d)^{1-\theta}$ even when the entire population is rural
 - Incentive to stop deforesting: $s^U(\hat{n}) = \frac{\rho}{\phi \hat{n}} \left(\frac{\phi \hat{n}}{\phi \gamma \hat{n}} \right)^{\theta} (\theta \phi \gamma \hat{n})$

Comparing two compensation transfers

• Participation of developing country requires at least that total returns under mechanism are higher than under laissez-faire in the long run: lower bound for s_0^J

Proposition

Comparing two mechanisms for preserving $\bar{n} - \hat{n}$ acres of forest,

- i/ if $p_d , the tied mechanism requires a smaller compensation than the untied mechanism for all <math>\hat{n} \in [0, n^*]$;
 - ii/ if $p > \alpha k_I^{1-\alpha}/(\phi \theta)$, we have
 - a/ the tied mechanism also requires a smaller compensation for all $\hat{n} \in [0,\hat{n}_c]$,
 - b/ the untied mechanism requires a smaller compensation for all $\hat{n} \in [\hat{n}_c, n^*]$

where $\hat{n}_c \in (0, n^*)$ equals the congestion effect (untied mechanism) with the opportunity cost of industrial labor (tied mechanism).

Comparing two compensation transfers

• Participation of developing country requires at least that total returns under mechanism are higher than under laissez-faire in the long run: lower bound for s_0^J

Proposition

Comparing two mechanisms for preserving $\bar{n} - \hat{n}$ acres of forest,

- i/ if $p_d , the tied mechanism requires a smaller compensation than the untied mechanism for all <math>\hat{n} \in [0, n^*]$;
 - ii/ if $p > \alpha k_l^{1-\alpha}/(\phi \theta)$, we have
 - a/ the tied mechanism also requires a smaller compensation for all $\hat{n} \in [0, \hat{n}_c]$,
 - b/ the untied mechanism requires a smaller compensation for all $\hat{n} \in [\hat{n}_c, n^*]$

where $\hat{n}_c \in (0, n^*)$ equals the congestion effect (untied mechanism) with the opportunity cost of industrial labor (tied mechanism).

Introducing Non-Timber Forest Products (NTFPs)

- NTFPs (e.g. fuelwood, forest fruits and vegetables) play a considerable role in the livelihoods of the rural poor (Robinson, 2011)
- NTFPs creates a value to the standing forest:
 - less deforestation under laissez-faire
 - but the price above which the economy specializes in agriculture is lower
- The costs of the preservation schemes are ranked similarly depending on the world price even if NFTPs modify the levels of the policy thresholds

Introducing Non-Timber Forest Products (NTFPs)

- NTFPs (e.g. fuelwood, forest fruits and vegetables) play a considerable role in the livelihoods of the rural poor (Robinson, 2011)
- NTFPs creates a value to the standing forest:
 - less deforestation under laissez-faire
 - but the price above which the economy specializes in agriculture is lower
- The costs of the preservation schemes are ranked similarly depending on the world price even if NFTPs modify the levels of the policy thresholds

Introducing Non-Timber Forest Products (NTFPs)

- NTFPs (e.g. fuelwood, forest fruits and vegetables) play a considerable role in the livelihoods of the rural poor (Robinson, 2011)
- NTFPs creates a value to the standing forest:
 - less deforestation under laissez-faire
 - but the price above which the economy specializes in agriculture is lower
- The costs of the preservation schemes are ranked similarly depending on the world price even if NFTPs modify the levels of the policy thresholds

Discussion

- Enforcement issues in a decentralized equilibrium
 - Untied mechanism: strong incentive to cheat and increase individual land endowment
 - Tied mechanism: reduced risk of cheating because of alternative sector occupation
- Durability of the transfer to avoid specializing in agriculture
 - To overcome this, introduce learning spillovers in the industrial sector as in the endogenous growth literature

Discussion b

- Enforcement issues in a decentralized equilibrium
 - Untied mechanism: strong incentive to cheat and increase individual land endowment
 - Tied mechanism: reduced risk of cheating because of alternative sector occupation
- Durability of the transfer to avoid specializing in agriculture
 - To overcome this, introduce learning spillovers in the industrial sector as in the endogenous growth literature

Concluding remarks

- Two transfers: one scheme reduces the amount of land per rural worker, whereas the other reduces the number of workers in the agricultural sector by fostering diversification
- Two opportunity costs: one corresponds to the opportunity costs of diversification whereas the other results from the congestion effect that arises in agriculture when too many workers produce on scarce lands
- Two variables play a crucial role in assessing the long term costs: the relative world price of agricultural commodities and the amount of forest to be preserved
 - If low world price, the tied mechanism is cost efficient whatever the environmental target
 - If high world price, the tied mechanism is cost efficient only if the stock of preserved forest is large, otherwise the untied mechanism performs better

Concluding remarks

- Two transfers: one scheme reduces the amount of land per rural worker, whereas the other reduces the number of workers in the agricultural sector by fostering diversification
- Two opportunity costs: one corresponds to the opportunity costs of diversification whereas the other results from the congestion effect that arises in agriculture when too many workers produce on scarce lands
- Two variables play a crucial role in assessing the long term costs: the relative world price of agricultural commodities and the amount of forest to be preserved
 - If low world price, the tied mechanism is cost efficient whatever the environmental target
 - If high world price, the tied mechanism is cost efficient only if the stock of preserved forest is large, otherwise the untied mechanism performs better

Concluding remarks

- Two transfers: one scheme reduces the amount of land per rural worker, whereas the other reduces the number of workers in the agricultural sector by fostering diversification
- Two opportunity costs: one corresponds to the opportunity costs of diversification whereas the other results from the congestion effect that arises in agriculture when too many workers produce on scarce lands
- Two variables play a crucial role in assessing the long term costs: the relative world price of agricultural commodities and the amount of forest to be preserved
 - If low world price, the tied mechanism is cost efficient whatever the environmental target
 - If high world price, the tied mechanism is cost efficient only if the stock of preserved forest is large, otherwise the untied mechanism performs better

